Part Number Hot Search : 
E1307 SMA22 CY7C016 86CH09NG MCZ33976 BCR164L3 NJU6682 HT46RB70
Product Description
Full Text Search
 

To Download IRF7350 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 94226B
IRF7350
HEXFET(R) Power MOSFET
l l l l
Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape and Reel
S1 G1 S2 G2
N - C H A N N EL M O S FE T 1 8 2 7
D1 D1
N-Ch VDSS 100V
P-Ch -100V
3
6
D2 D2
4
5
P -C H A N N E L M O S F E T
RDS(on) 0.21
0.48
T op V iew
Description
These dual N and P channel HEXFET(R) power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET(R) power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in DC motor drives and load management applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.
SO-8
Absolute Maximum Ratings
Parameter
VDS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C EAS VGS dv/dt TJ, TSTG Drain-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Single Pulse Avalanche Energy Gate-to-Source Voltage Peak Diode Recovery dv/dt Junction and Storage Temperature Range
Max.
N-Channel 100 2.1 1.7 8.4 2.0 0.016 35 20 4.0 -55 to + 150 51 20 4.3 P-Channel -100 -1.5 -1.2 -6.0
Units
A
W W/C mJ V V/ns C
Thermal Resistance
Symbol
RJL RJA
Parameter
Junction-to-Drain Lead Junction-to-Ambient
Typ.
--- ---
Max.
20 62.5
Units
C/W
www.irf.com
1
08/09/01
IRF7350
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter V(BR)DSS Drain-to-Source Breakdown Voltage N-Ch P-Ch N-Ch P-Ch Min. Typ. Max. Units 100 -- -- V -100 -- -- -- 0.12 -- V/C -- -0.11 -- -- -- -- -- -- -- -- -- -- -- -- 19 21 3.0 3.4 8.8 10 6.7 25 11 13 35 30 20 40 380 360 100 110 54 65 0.21 0.48 Conditions VGS = 0V, I D = 250A VGS = 0V, ID = -250A Reference to 25C, I D = 1mA Reference to 25C, ID = -1mA VGS = 10V, ID = 2.1A VGS = -10V, ID = -1.5A V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
N-Ch -- R DS(ON) Static Drain-to-Source On-Resistance P-Ch VGS(th) gfs Gate Threshold Voltage Forward Transconductance N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch -- 2.0 -2.0 2.4 1.1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
IDSS IGSS Qg Qgs Qgd t d(on) tr t d(off) tf C iss C oss C rss
Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
4.0 V -4.0 -- S -- 25 -25 A 250 -250 100 28 31 4.5 nC 5.1 13 16 -- -- -- -- ns -- -- -- -- -- -- -- pF -- -- --
VDS = VGS, ID = 250A VDS = VGS, ID = -250A VDS = 50V, ID = 2.1A VDS = -50V, ID = -1.5A VDS = 100V, VGS = 0V VDS = -100V, VGS = 0V VDS = 80 V, VGS = 0V, TJ = 70C VDS = -80V, VGS = 0V, TJ = 70C VGS = 20V N-Channel ID = 2.1A, VDS = 80V, VGS = 10V P-Channel ID = -1.5A, VDS = -80V, VGS = -10V N-Channel VDD = 50V, I D = 1.0A, RG = 22, RD = 50, VGS = 10V P-Channel VDD = -50V, ID = -1.0A, RG = 22, RD = 50, VGS = -10V N-Channel VGS = 0V, V DS = 25V, = 1.0MHz P-Channel VGS = 0V, VDS = -25V, = 1.0MHz
Source-Drain Ratings and Characteristics
Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Min. Typ. Max. Units Conditions -- -- 1.8 -- -- -1.4 A -- -- 8.4 -- -- -6.0 -- -- 1.3 TJ = 25C, IS = 1.8A, VGS = 0V V -- -- -1.6 TJ = 25C, IS = -1.4A, VGS = 0V -- 72 110 ns N-Channel -- 77 120 TJ = 25C, IF = 1.8A, di/dt = 100A/s -- 205 310 nC P-Channel TJ = 25C, IF = -1.4A, di/dt = -100A/s -- 240 360
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
N channel: Starting TJ = 25C, L = 4.0mH, RG = 25, IAS = 4.2A
P channel: Starting TJ = 25C, L = 11mH, RG = 25, IAS = -3.0A
Pulse width 400s; duty cycle 2%. Surface mounted on 1 in square Cu board
2
www.irf.com
N-CHANNEL
IRF7350
100
VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 4.0V TOP
100
ID , Drain-to-Source Current (A)
10
ID , Drain-to-Source Current (A)
VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 4.0V TOP
10
1
1
4.0V
0.1
0.1
4.0V 20s PULSE WIDTH Tj = 25C
0.01 0.1 1 10 100
20s PULSE WIDTH Tj = 150C
0.01 0.1 1 10 100
VDS , Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
10.00
2.5
I D = 2.1A
ID , Drain-to-Source Current ( )
T J = 150C
R DS(on) , Drain-to-Source On Resistance
2.0
1.00
(Normalized)
1.5
T J = 25C
0.10
1.0
0.5
0.01 3.0 4.5
VDS = 15V 20s PULSE WIDTH
6.0 7.5 9.0
0.0 -60 -40 -20 0 20 40 60 80
V GS = 10V
100 120 140 160
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature
( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7350
N-CHANNEL
10000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd , C gs ds SHORTED Crss = C gd Coss = C + Cgd ds
12
ID = 2.1A
10
VDS = 80V VDS = 50V VDS = 20V
C, Capacitance(pF)
VGS, Gate-to-Source Voltage (V)
1000
7
Ciss Coss Crss
5
100
2
10 1 10 100
0 0 4 8 12 16 20
VDS, Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
10.00
100 OPERATION IN THIS AREA LIMITED BY R DS(on) 10
1.00
T J = 150C T J = 25C
ID , Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
100sec 1 1msec
VGS = 0V 0.10 0.0 0.5 1.0 1.5 VSD , Source-toDrain Voltage (V) 0.1 1
Tc = 25C Tj = 150C Single Pulse 10
10msec
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7350
N-CHANNEL
2.5
VDS
2.0
RD
VGS RG
D.U.T.
+
ID , Drain Current (A)
-VDD
1.5
VGS
1.0
Pulse Width 1 s Duty Factor 0.1 %
Fig 10a. Switching Time Test Circuit
0.5
VDS 90%
0.0 25 50 75 100 125 150
TC , Case Temperature
( C)
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
100
D = 0.50
(Z thJA)
0.20 10 0.10
Thermal Response
0.05
0.02 1 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01 0.1
Notes: 1. Duty factor D = 2. Peak T t1/ t
2 J = P DM x Z thJA
P DM t1 t2 +T A 10 100
1
t 1, Rectangular Pulse Duration (sec)
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7350
N-CHANNEL
R DS(on) , Drain-to -Source On Resistance ( )
R DS (on) , Drain-to-Source On Resistance ( )
0.40
0.18
0.30
0.17
ID = 2.1A
0.20
VGS = 10V 0.16
0.10
0.00 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0
0.15 0 2 4 6 8 10 ID , Drain Current (A)
VGS, Gate -to -Source Voltage (V)
Fig 12. Typical On-Resistance Vs. Gate Voltage
Fig 13. Typical On-Resistance Vs. Drain Current
4.0
70 60
VGS(th) Gate threshold Voltage (V)
3.5
50
Power (W)
50 75 100 125 150
3.0
ID = 250A
40 30 20 10
2.5
2.0 -75 -50 -25 0 25
0 1.00 10.00 100.00 1000.00
T J , Temperature ( C )
Time (sec)
Fig 14. Typical Threshold Voltage Vs. Junction Temperature
Fig 15. Typical Power Vs. Time
6
www.irf.com
IRF7350
N-CHANNEL
100
80
EAS , Single Pulse Avalanche Energy (mJ)
ID TOP 1.9A 3.4A 4.2A BOTTOM
1 5V
60
VDS
L
D R IV E R
40
RG
20V tp
D .U .T
IA S
+ V - DD
A
0 .0 1
20
Fig 16c. Unclamped Inductive Test Circuit
0 25 50 75 100 125 150
Starting T , J Junction Temperature
( C)
Fig 16a. Maximum Avalanche Energy Vs. Drain Current
V (B R )D SS tp
IAS
Fig 16d. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K 12V .2F .3F
QG
VGS
D.U.T. + V - DS
QGS VG
QGD
VGS
3mA
IG
ID
Current Sampling Resistors
Charge
Fig 17. Gate Charge Test Circuit
Fig 18. Basic Gate Charge Waveform
www.irf.com
7
IRF7350
10
N-CHANNEL
Duty Cycle = Single Pulse
1
Avalanche Current (A)
0.01 0.05 0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses
0.1
0.01
0.001 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03
tav (sec)
Fig 19. Typical Avalanche Current Vs.Pulsewidth
40
EAR , Avalanche Energy (mJ)
TOP Single Pulse BOTTOM 10% Duty Cycle ID = 4.2A
30
20
10
0 25 50 75 100 125 150
Starting T J , Junction Temperature (C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av *f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = T/ ZthJC Iav = 2T/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav
Fig 20. Maximum Avalanche Energy Vs. Temperature
8
www.irf.com
IRF7350
P-CHANNEL
100
VGS -15V -10V -7.0V -6.0V -5.5V -5.0V -4.5V BOTTOM -4.0V TOP
100
-I D , Drain-to-Source Current (A)
10
-I D , Drain-to-Source Current (A)
10
1
VGS -15V -10V -7.0V -6.0V -5.5V -5.0V -4.5V BOTTOM -4.0V TOP
1
0.1
-4.0V
0.01
0.1
-4.0V 20s PULSE WIDTH Tj = 150C
20s PULSE WIDTH Tj = 25C
0.001 0.1 1 10 100
0.01 0.1 1 10 100
-V DS , Drain-to-Source Voltage (V)
-V DS , Drain-to-Source Voltage (V)
Fig 21. Typical Output Characteristics
Fig 22. Typical Output Characteristics
10.00
2.5
I D = -1.5A
-I D, Drain-to-Source Current ( )
T J = 150C
2.0
R DS(on) , Drain-to-Source On Resistance
1.00
(Normalized)
1.5
T J = 25C
0.10
1.0
0.5
0.01 4.0 6.0
VDS = -25V 20s PULSE WIDTH
8.0 10.0
0.0 -60 -40 -20 0 20 40 60 80
V GS = -10V
100 120 140 160
-V GS, Gate-to-Source Voltage (V)
TJ , Junction Temperature
( C)
Fig 23. Typical Transfer Characteristics
Fig 24. Normalized On-Resistance Vs. Temperature
www.irf.com
9
IRF7350
10000
P-CHANNEL
VGS = 0V, f = 1 MHZ Ciss = C + Cgd , C gs ds SHORTED Crss = C gd Coss = C + Cgd ds
12
I D = -1.5A
10
V DS = 80V V DS = 50V V DS = 20V
C, Capacitance(pF)
-V GS, Gate-to-Source Voltage (V)
1000
7
Ciss Coss
100
5
Crss
2
10 1 10 100
0 0 5 10 15 20 25
-V DS , Drain-to-Source Voltage (V)
Q G, Total Gate Charge (nC)
Fig 25. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 26. Typical Gate Charge Vs. Gate-to-Source Voltage
10.00
100
-ID , Drain-to-Source Current (A)
-I SD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R DS (on) 10
1.00
T J = 150C T J = 25C
100sec 1 1msec 10msec
VGS = 0V 0.10 0.2 0.4 0.6 0.8 1.0 1.2 -V SD , Source-toDrain Voltage (V) 0.1
Tc = 25C Tj = 150C Single Pulse 1 10
100
1000
-V DS , Drain-toSource Voltage (V)
Fig 27. Typical Source-Drain Diode Forward Voltage
Fig 28. Maximum Safe Operating Area
10
www.irf.com
IRF7350
P-CHANNEL
2.0
VDS
1.6
RD
VGS RG
D.U.T.
+
- VDD
-I D, Drain Current (A)
1.2
VGS
0.8
Pulse Width 1 s Duty Factor 0.1 %
Fig 10a. Switching Time Test Circuit
0.4
VDS 90%
0.0 25 50 75 100 125 150
TC , Case Temperature
( C)
Fig 29. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
100
D = 0.50
(Z thJA)
0.20 10 0.10
Thermal Response
0.05
0.02 1 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01 0.1
Notes: 1. Duty factor D = 2. Peak T t1/ t
2 J = P DM x Z thJA
P DM t1 t2 +T A 10 100
1
t 1, Rectangular Pulse Duration (sec)
Fig 30. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
11
IRF7350
R DS(on) , Drain-to -Source On Resistance ( )
0.80
P-CHANNEL
0.500
0.70
RDS (on) , Drain-to-Source On Resistance ( )
0.475
0.60
ID = -1.5A
0.50
0.450
VGS = -10V
0.425
0.40
0.30 5.0 7.0 9.0 11.0 13.0 15.0
0.400 0 1 2 3 4 5 6
-V GS, Gate -to -Source Voltage (V)
-I D , Drain Current (A)
Fig 31. Typical On-Resistance Vs. Gate Voltage
Fig 32. Typical On-Resistance Vs. Drain Current
4.0
70 60
-V GS(th) Gate threshold Voltage (V)
3.5
ID = -250A
50
Power (W)
40 30 20
3.0
2.5 10 0 -75 -50 -25 0 25 50 75 100 125 150 1.00 10.00 100.00 1000.00
2.0
T J , Temperature ( C )
Time (sec)
Fig 33. Typical Threshold Voltage Vs. Junction Temperature
Fig 34. Typical Power Vs. Time
12
www.irf.com
IRF7350
P-CHANNEL
120
96
ID TOP -1.3A -2.4A -3.0A BOTTOM
1 5V
E AS, Single Pulse Avalanche Energy (mJ)
72
VDS
L
D R IV E R
48
RG
20V
D .U .T
IA S
+ V - DD
A
24
tp
0 .0 1
Fig 35c. Unclamped Inductive Test Circuit
0 25 50 75 100 125 150
Starting T , Junction Temperature J
( C)
Fig 35a. Maximum Avalanche Energy Vs. Drain Current
V (B R )D SS tp
IAS
Fig 35d. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K 12V .2F .3F
QG
VGS
D.U.T. + V - DS
QGS VG
QGD
VGS
3mA
IG
ID
Current Sampling Resistors
Charge
Fig 36. Gate Charge Test Circuit
Fig 37. Basic Gate Charge Waveform
www.irf.com
13
IRF7350
P-CHANNEL
10
Duty Cycle = Single Pulse
- Avalanche Current (A)
1
0.01 0.05 0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses
0.1
0.01
0.001 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02
tav (sec)
Fig 38. Typical Avalanche Current Vs.Pulsewidth
60
EAR , Avalanche Energy (mJ)
50
TOP Single Pulse BOTTOM 10% Duty Cycle ID = -3.0A
40
30
20
10
0 25 50 75 100 125
Starting T J , Junction Temperature (C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 150 D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = T/ ZthJC Iav = 2T/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav
Fig 39. Maximum Avalanche Energy Vs. Temperature
14
www.irf.com
IRF7350
SO-8 Package Details
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H K L y
1
2
3
4
.050 BAS IC .025 BAS IC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e
e1 A C 0.10 [.004] 8X b 0.25 [.010] A1 CAB y
K x 45
8X L 7
8X c
NOT ES : 1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES ]. 4. OUTLINE CONFORMS T O JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050]
F OOT PRINT 8X 0.72 [.028]
6.46 [.255]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET ) DATE CODE (YWW) Y = LAS T DIGIT OF THE YEAR WW = WEEK LOT CODE PART NUMBER
15
INTERNAT IONAL RECTIFIER LOGO
www.irf.com
YWW XXXX F7101
IRF7350
SO-8 Tape and Reel
T E R M IN A L N U M B E R 1
1 2 .3 ( .48 4 ) 1 1 .7 ( .46 1 )
8 .1 ( .31 8 ) 7 .9 ( .31 2 )
F E E D D IR E C T IO N
N O TES: 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ). 3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1.
33 0.0 0 (1 2 .9 9 2 ) M AX .
1 4 .4 0 ( .5 66 ) 1 2 .4 0 ( .4 88 ) N O TE S : 1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 .
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/01
16
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF7350

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X